Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats.

نویسندگان

  • Yunru Li
  • Monica A Gorassini
  • David J Bennett
چکیده

After chronic spinal injury, motoneurons spontaneously develop two persistent inward currents (PICs): a TTX-sensitive persistent sodium current (sodium PIC) and a nimodipine-sensitive persistent calcium current (calcium PIC). In the present paper, we examined how these PICs contributed to motoneuron firing. Adult rats were spinalized at the S(2) sacral level, and after 2 months intracellular recordings were made from sacrocaudal motoneurons in vitro. The PICs and repetitive firing were measured with slow triangular voltage and current ramps, respectively. The sodium PIC was examined after blocking the calcium PIC with nimodipine (20 microM; n = 12). It was always activated subthreshold, and during current ramps in nimodipine, it produced a sodium plateau that assisted in initiating and maintaining firing (self-sustained firing). The sodium PIC oscillated off and on during firing and helped initiate each spike, and near threshold this caused abnormally slow firing (2.82 +/- 1.21 Hz). A low dose of TTX (0.5 microM) blocked the sodium PIC, sodium plateau, and very slow firing prior to affecting the spike itself. The calcium PIC was estimated as the current blocked by nimodipine or current remaining in TTX (2 microM; n = 13). In 59% of motoneurons, the calcium PIC was activated subthreshold to firing and produced a plateau that assisted in initiating and sustaining firing because nimodipine significantly increased the firing threshold current and decreased the self-sustained firing. In the remaining motoneurons (41%), the calcium PIC was activated suprathreshold to firing and during current ramps did not initially affect firing but eventually was activated and caused an acceleration in firing followed by self-sustained firing, which were blocked by nimodipine. The frequency-current (F-I) slope was 3.0 +/- 1.0 Hz/nA before the calcium PIC activation (primary range), 6.3 +/- 3.6 Hz/nA during the calcium PIC onset (secondary range; acceleration), and 2.1 +/- 1.3 Hz/nA with the calcium PIC steadily activated (tertiary range). Nimodipine eliminated the secondary and tertiary ranges, leaving a linear F-I slope of 3.7 +/- 1.0 Hz/nA. A single low-threshold shock to the dorsal root evoked a many-second-long discharge, the counterpart of a muscle spasm in the awake chronic spinal rat. This long-lasting reflex was caused by the motoneuron PICs because when the activation of the voltage-dependent PICs was prevented by hyperpolarization, the same dorsal root stimulation only produced a brief excitatory postsynaptic potential (<1 s). Both the calcium and sodium PIC were involved because nimodipine only partly reduced the reflex and there remained very slow firing mediated by the sodium PIC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury.

We examined the modulation of persistent inward currents (PICs) by serotonin (5-HT) in spinal motoneurons of normal and chronic spinal rats. PICs are composed of both a TTX-sensitive persistent sodium current (Na PIC) and a nimodipine-sensitive persistent calcium current (Ca PIC), and we focused on quantifying the Na PIC (and its action on the total PIC), which is known to be critical in enabli...

متن کامل

Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats.

Months after sacral spinal transection in rats (chronic spinal rats), motoneurons below the injury exhibit large, low-threshold persistent inward currents (PICs), composed of persistent sodium currents (Na PICs) and persistent calcium currents (Ca PICs). Here, we studied whether motoneurons of normal adult rats also exhibited Na and Ca PICs when the spinal cord was acutely transected at the sac...

متن کامل

Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats.

After chronic spinal cord injury motoneurons exhibit large plateau potentials (sustained depolarizations triggered by brief inputs) that play a primary role in the development of muscle spasms and spasticity (Bennett et al. 2001a,b). The present study examined the voltage-gated persistent inward currents (PICs) underlying these plateaus. Adult rats were spinalized at the S2 sacral spinal level ...

متن کامل

Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity.

In the months after spinal cord injury, motoneurons develop large voltage-dependent persistent inward currents (PICs) that cause sustained reflexes and associated muscle spasms. These muscle spasms are triggered by any excitatory postsynaptic potential (EPSP) that is long enough to activate the PICs, which take > 100 ms to activate. The PICs are composed of a persistent sodium current (Na PIC) ...

متن کامل

Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury.

Spasticity is commonly observed after chronic spinal cord injury (SCI) and many other central nervous system disorders (e.g., multiple sclerosis, stroke). SCI-induced spasticity has been associated with motoneuron hyperexcitability partly due to enhanced activation of intrinsic persistent inward currents (PICs). Disrupted spinal inhibitory mechanisms also have been implicated. Altered inhibitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2004